Week 4
MATH 34A
TA: Jerry Luo

46. Bacteria are growing exponentially in an environment of unlimited space and food. The doubling time is 1 hour.
(a) If there are initially x milligrams of bacteria, express the mass of the bacteria as a function of time t.
(b) Use your answer to (a) to write down an equation whose solution is the time at which there are $3 x$ milligrams of bacteria. (Your answer should be something of the form, e.g. $3 x=5 t^{2}$)
(c) Solve for t.
(d) Your answer to (c) should be between 1 and 2 hours. Check that it is. Do you understand why it has to be?
47. The level of radioactivity on the site of a nuclear explosion is decaying exponentially. The level measured in 1920 was found to be 0.7 times the level measured in 1910. What is the half-life?
48. Express 9^{y} as a power of 10 . In other words, find x such that $9^{y}=10^{x}$.
49. In the year 1900, in the country Acirema, there were 100 Lawyers and 3 million people. Every 10 years, the number of Lawyers doubles, and the population increases by 2 million. Let t be the number of years after 1900. Thus $t=3$ corresponds to 1903 .

Find the equation involving t whose solution tells you in which year 20 percent of the population are Lawyers. DO NOT SOLVE OR BEGIN TO SOLVE THIS EQUATION. $0.2=\ldots$
58. E. Coli bacteria are growing in a hamburger exponentially. Initially there are 100, 000 bacteria. After 15 minutes there are 150,000 . How many are there after an hour?

